Abstract

The interaction of a cold front with the Alps is studied by means of real-case numerical simulations for a case occurring at the end of the Alpine Experiment (ALPEX) on 28 April–2 May, 1982. Simulations are performed with the numerical weather prediction model chain Europa-Modell (EM) and its one-way nested high-resolution model (HM) of the German and Swiss Weather Services. The outer EM simulation (56 km horizontal resolution) uses initial and lateral boundary fields taken from the ALPEX-IIIb reanalysis data set. This reanalysis data set is based on the operational EM analysis scheme, but takes into consideration a wide range of field phase data taken during the ALPEX field campaign. A comparison of simulations driven by the ALPEX and ECMWF reanalysis (ERA) data is performed. The simulation driven by the former captures the intensity and vertical depth of the developing lee cyclone substantially better than the corresponding run driven by the ERA. The transient development of the impingement of a cold front on the Alps induces a wide range of mesoscale phenomenon such as flow splitting, mistral, north foehn, cyclogenesis, anticyclonic vortex and bora. These flow evolutions are analyzed using HM simulations with a horizontal resolution of 14 km and visualized performing comprehensive trajectory calculations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call