Abstract

The purpose of this study was to use functional near-infrared spectroscopy (fNIRS) to examine patterns of both activation and deactivation that occur in the frontal lobe in response to noxious stimuli. The frontal lobe was selected because it has been shown to be activated by noxious stimuli in functional magnetic resonance imaging studies. The brain region is located behind the forehead which is devoid of hair, providing a relative ease of placement for fNIRS probes on this area of the head. Based on functional magnetic resonance imaging studies showing blood-oxygenation-level dependent changes in the frontal lobes, we evaluated functional near-infrared spectroscopy measures in response to two levels of electrical pain in awake, healthy human subjects (n = 10; male = 10). Each subject underwent two recording sessions separated by a 30-minute resting period. Data collected from 7 subjects were analyzed, containing a total of 38/36 low/high intensity pain stimuli for the first recording session and 27/31 pain stimuli for the second session. Our results show that there is a robust and significant deactivation in sections of the frontal cortices. Further development and definition of the specificity and sensitivity of the approach may provide an objective measure of nociceptive activity in the brain that can be easily applied in the surgical setting.

Highlights

  • While subjective measures of pain may be helpful in the clinic, there are a number of clinical conditions where subjects are either drowsy or unconscious during tissue damage, such as surgery

  • Providing adequate anesthesia during surgery is routine, but we do not have a good measure of nociceptive stimuli that may act on brain systems

  • The remaining seven data sets contained a total of 65 usable low pain intensity stimuli and 67 high pain intensity stimuli, and were analyzed to determine the group mean hemodynamic response over the central and lateral probe sections presented in Source 3 3 3 3 4 4 4 4 9 9 10 10

Read more

Summary

Introduction

While subjective measures of pain may be helpful in the clinic, there are a number of clinical conditions where subjects are either drowsy or unconscious during tissue damage, such as surgery. Providing adequate anesthesia during surgery is routine, but we do not have a good measure of nociceptive stimuli that may act on brain systems. Our prior report suggests that during anesthesia, activation of certain brain regions may take place during nociceptive stimulation[1].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.