Abstract
We apply Dynamic Causal Models to electrocorticogram recordings from two macaque monkeys performing a problem-solving task that engages working memory, and induces time-on-task effects. We thus provide a computational account of changes in effective connectivity within two regions of the fronto-parietal network, the dorsolateral prefrontal cortex and the pre-supplementary motor area. We find that forward connections between the two regions increased in strength when task demands increased, and as the experimental session progressed. Similarities in the effects of task demands and time on task allow us to interpret changes in frontal connectivity in terms of increased attentional effort allocation that compensates cognitive fatigue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.