Abstract

Evidence has recently been presented which demonstrates that the amygdaloid central nucleus projects directly upon cardiovascular/autonomic regulatory nuclei of the dorsal medulla and that in the rabbit this nucleus may influence cardiovascular activity during emotional states. The present study is one of a series of investigations designed to provide information on the innervation of the central nucleus in the rabbit and describes the topography and origin of frontal cortex projections to the nucleus based upon retrograde and anterograde axonal transport techniques. Injections of horseradish peroxidase or the fluorescent dyes, Bisbenzimide or Nuclear Yellow, into the central nucleus resulted in abundant numbers of retrogradely labeled neurons in three regions of the frontal cortex: the insular cortex on the lateral surface and areas 25 and 32 on the medial surface of the hemisphere. The majority of labeled neurons in the insular cortex were located in layer V of the dorsal and posterior agranular insular regions, although labeled neurons were observed in layer V of the granular insular cortex as well as in layers II and III of the posterior agranular insular cortex. Labeled neurons in areas 25 and 32 were located throughout all layers and the total number of these neurons was substantially less than that observed in the insular cortex. Autoradiographic experiments in which amino acids were injected into the insular cortex resulted in a dense pattern of transported label within the central nucleus that extended rostrally into the sublenticular substantia innominata and lateral component of the bed nucleus of the stria terminalis. Label was also observed in the cortical, lateral, basolateral and basomedial amygdaloid nuclei. In contrast to the projections from the insular cortex, amino acid injections into areas 25 and 32 resulted in only relatively light labeling within the most rostral region of the central nucleus; otherwise the nucleus was partially encapsulated and virtually devoid of label. These results suggest that the insular cortex possesses the potential to directly influence the central nucleus projection to cardiovascular/autonomic regulatory nuclei of the dorsal medulla and thus, together with the amygdaloid central nucleus, appears to be an important component of a forebrain system involved in cardiovascular/autonomic regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call