Abstract
The aim of this study was to investigate the effects of disruption on the warning auditory S1-elicited ERP and CNV complexes recordable on the site and on remote ipsilateral apparently normal anatomo-functionally interconnected brain regions. These effects in some cases showed aspects of a probable diaschisis-like phenomenon, due to resections of extensive frontal association cortex or of primary and secondary sensory parieto-temporal areas damaged by differing pathological processes. Using a standard CNV paradigm, 21/19 EEG electrodes connected with three different references, and scalp-topographic bidimensional mapping analysis, the S1 auditory binaural/monaural clicks N1a,b,c, P2, N2, P3 and CNV waves were recorded in 10 normal subjects and 11 patients. Nine of the latter had been submitted to unilateral frontal dorsolateral cortex ablation, one to bihemispheric dorsomedial cortex ablation, and one to unilateral ablation of sensory parieto-temporal cortex and underlying white matter, verified through CT/MRI examinations. No true S1ERP/CNV components were recordable over the ablated cortical areas, whereas normal ERP/CNV complexes were observable on the intact hemispheres. In five patients, four of whom with frontocortical ablations, the S1 ERP/CNV complexes appeared severely diminished or disrupted, in two cases in a slow, partially-reversible manner, also in the neuroradiologically normal ipsilateral functionally-connected post-rolandic sensory and association areas. Similar deactivation of some ERP components was observed in reverse on the unilateral dorsolateral frontocortical region in the fifth patient with parieto-temporal cortex ablation. Even when they are partially reversible, these ipsilateral remote ERP changes in apparently intact brain regions, due to ablations of functionally-interconnected cortical formations, probably reflect cortical deactivation or simply dysfacilitation deriving from functional unilateral diaschisis. If these changes are instead irreversible they may probably be interpreted as transneuronal degeneration phenomena, though they are not at present easy to document either neuroradiologically or electroclinically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.