Abstract

Music represents a salient stimulus for the brain with two key features: pitch and rhythm. Few data are available on cognitive analysis of music listening in musically naïve healthy participants. Beyond auditory cortices, neuroimaging data showed the involvement of prefrontal cortex in pitch and of cerebellum in rhythm. The present study is aimed at investigating the role of prefrontal and cerebellar cortices in both pitch and rhythm processing. The performance of fifteen participants without musical expertise was investigated in a listening discrimination task. The task required to decide whether two eight-element melodic sequences were equal or different according to pitch or rhythm characteristics. Before the task, we applied a protocol of continuous theta burst transcranial magnetic stimulation interfering with the activity of the left cerebellar hemisphere (lCb), right inferior frontal gyrus (rIFG), or vertex (Cz-control site), in a within cross-over design. Our results showed that participants were more accurate in pitch than rhythm tasks. Importantly, the reaction times were slower following rIFG or lCb stimulations in both tasks. Notably, frontal and cerebellar stimulations did not induce any motor effect in right and left hand. The present findings point to the role of the fronto-cerebellar network in music processing with a single mechanism for both pitch and rhythm patterns.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.