Abstract

Travelling fronts for scalar balance laws with monostable reaction, possibly non-convex flux, and viscosity $\varepsilon \geq 0$ exist for all velocities greater than or equal to an $\varepsilon$-dependent minimal value, both in the parabolic case when $\varepsilon >0$ and in the hyperbolic case when $\varepsilon =0$. We prove that as $\varepsilon \rightarrow 0$, the minimal velocity ${c_{\varepsilon}^*}$ converges to $c^*$, the minimal value when $\varepsilon =0$, and that ${c_{\varepsilon}^*}\geq c^*$ for all $\varepsilon >0$. The proof uses comparison theorems and the variational characterization of the minimal parabolic front velocity. This convergence also yields a reaction-independent sufficient condition for the minimal velocity of the parabolic problem for small positive $\varepsilon$ to be strictly greater than the value predicted by the problem linearized about the unstable equilibrium, that is, for the minimal-velocity travelling front of the viscous equation to be pushed for sufficiently small $\varepsilon$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.