Abstract
The connection between the weak theories for a class of geometric equations and the asymptotics of appropriately rescaled reaction-diffusion equations is rigorously established. Two different scalings are studied. In the first, the limiting geometric equation is a first-order equation; in the second, it is a generalization of the mean curvature equation. Intrinsic definitions for the geometric equations are obtained, and uniqueness under a geometric condition on the initial surface is proved. In particular, in the case of the mean curvature equation, this condition is satisfied by surfaces that are strictly starshaped, that have positive mean curvature, or that satisfy a condition that interpolates between the positive mean curvature and the starshape conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.