Abstract

Short fatigue crack growth investigation is of considerable scientific interest as it comprises a significant portion of the total fatigue life of a structure. It is very challenging to accurately quantify this stage of fatigue crack growth experimentally. In this article, a novel front face strain compliance technique for single-edge notched specimens subjected to four-point bending is proposed. Finite element analysis is performed to determine the correlation between crack length and strain change near the crack. This relationship is then validated by experiments in which strains are measured by strain gauges attached near the short crack, and crack length is quantified by examining beachmark lines at the fracture surfaces. Based on the numerical and experimental results, it is concluded that the strain measured near the notch allows quantifying short crack growth for normalised crack lengths in the range 0.01 ≤ a/W ≤ 0.06 ( a/W being the ratio of crack length over specimen width). A compliance equation based on the front face strain is finally presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call