Abstract
For reliable speech recognition, it is necessary to handle the usage environments. In this study, we target voice-driven multi-unmanned aerial vehicles (UAVs) control. Although many studies have introduced several systems for voice-driven UAV control, most have focused on a general speech recognition architecture to control a single UAV. However, for stable voice-controlled driving, it is essential to handle the environmental conditions of UAVs carefully, including environmental noise that deteriorates recognition accuracy, and the operating scheme, e.g., how to direct a target vehicle among multiple UAVs and switch targets using speech commands. To handle these issues, we propose an efficient vehicle-embedded speech recognition front-end for multi-UAV control via voice. First, we propose a noise reduction approach that considers non-stationary noise in outdoor environments. The proposed method improves the conventional minimum mean squared error (MMSE) approach to handle non-stationary noises, e.g., babble and vehicle noises. In addition, we propose a multi-channel voice trigger method that can control multiple UAVs while efficiently directing and switching the target vehicle via speech commands. We evaluated the proposed methods on speech corpora, and the experimental results demonstrate that the proposed methods outperform the conventional approaches. In trigger word detection experiments, our approach yielded approximately 7%, 12%, and 3% relative improvements over spectral subtraction, adaptive comb filtering, and the conventional MMSE, respectively. In addition, the proposed multi-channel voice trigger approach achieved approximately 51% relative improvement over the conventional approach based on a single trigger word.
Highlights
A variety of speech recognition applications have been introduced after the commercial success of personal assistant devices
We found that adaptive filtering and spectral subtraction provided poor accuracy, which indicates that spectral filtering approaches may induce signal distortions in speech while reducing noise components
We evaluated the performance of three comparative approaches, i.e., the conventional approach, the proposed approach based on the first decision criterion (Proposed_DC1) described in (10), and the proposed approach based on the second decision criterion (Proposed_DC2) described in (11)
Summary
A variety of speech recognition applications have been introduced after the commercial success of personal assistant devices. Considerable attempts have been made to apply voice-driven control for moving vehicles, e.g., cars and airplanes (even combat planes). The convenience of hands-free voice control has extended the range of speech recognition applications to unmanned aerial vehicles (UAV).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.