Abstract
This paper focuses on multi-radio front-end transmitter, a function implied by cognitive radio (0.5–6 GHz). S and C bands standards (wireless local and metropolitan area networks) present a challenge, due to the signal modulation schemes (orthogonal frequency division multiplex (OFDM)/WCDMA, wideband code division multiple access) dynamic (tens of dBs), driving us to a mandatory transmitter linearization. The idea is to provide frequency, flexibility, and average power control of a multi-radio high-efficiency front end for such signals (polar/envelope elimination and restoration (EER) structure). The study implies antennas design and average power control demonstration. Based on a switched mode power amplifier (PA), a discrete detuning is possible to adapt the PA at both “WiMAX” and “Wifi5” frequencies. This architecture amplifies signals with amplitude information. This is coded here by the ΣΔ/PWM (pulse width modulation) technique, to present a constant envelope signal. The amplitude information is restored by a pass-band radio frequency (RF) filter. The antenna can be designed with a notch, to reduce the filtering constraints (selectivity and standards coexistences) and to help in the restoration of amplitude information. Average power control is illustrated by voltage supply variation and results are a possible dynamic of 9.5 dB. To complete the analysis, the simulation of the propagation channel, including antennas, with CST (free space, line of sight) is imported under AGILENT-ADS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Microwave and Wireless Technologies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.