Abstract

The front cover provided by the TheoCheM group from Vrije Universiteit Amsterdam shows the four primary interaction components (hydrogen bonding, cross-terms, base stacking, and solvation) that determine the stability of B-DNA duplexes. Quantum chemical analyses identify an interplay between the stabilizing hydrogen bonds between nucleotides that drive the formation of the DNA double-strand, and the destabilizing loss of stacking interactions within individual strands combined with partial desolvation. The sequence-dependence in the duplex stability originates mainly from the cross-terms which can be attractive or repulsive. More information on 10 years of ChemistryOpen can be found in the Research Article by Celine Nieuwland et al.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.