Abstract
Polycrystalline silicon thin-film transistors (TFTs) with different front- and back-gate lengths are investigated. In addition, the laser annealing process yields high-quality directional grains that enable us to orient TFT channels parallel or perpendicular to the grain boundaries. It is demonstrated that the turn-on voltage is not dependent on grain orientation, unlike the subthreshold swing and the maximum transconductance. Moreover, it is shown that double-gate TFTs are fully depleted and therefore back interface properties exert critical influence on the overall TFT electrical performance. From electrical measurements the back interface state density was estimated to reach values and it was shown that the electrical performance of the double-gate devices is highly dependent on the back-to-front gate-length ratio.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.