Abstract
Traditional attack detection approaches utilize predefined databases of known signatures about already-seen tools and malicious activities observed in past cyber-attacks to detect future attacks. More sophisticated approaches apply machine learning to detect abnormal behavior. Nevertheless, a growing number of successful attacks and the increasing ingenuity of attackers prove that these approaches are insufficient. This paper introduces an approach for digital forensics-based early detection of ongoing cyber-attacks called Fronesis. The approach combines ontological reasoning with the MITRE ATT&CK framework, the Cyber Kill Chain model, and the digital artifacts acquired continuously from the monitored computer system. Fronesis examines the collected digital artifacts by applying rule-based reasoning on the Fronesis cyber-attack detection ontology to identify traces of adversarial techniques. The identified techniques are correlated to tactics, which are then mapped to corresponding phases of the Cyber Kill Chain model, resulting in the detection of an ongoing cyber-attack. Finally, the proposed approach is demonstrated through an email phishing attack scenario.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.