Abstract

The row-column combination RCC maps two (word) languages over the same alphabet onto the set of rectangular arrays, i.e., pictures, such that each row/column is a word of the first/second language. The resulting array is thus a crossword of the component words. Depending on the family of the components, different picture (2D) language families are obtained: e.g., the well-known tiling-system recognizable languages are the alphabetic projection of the crossword of local (regular) languages. We investigate the effect of the RCC operation especially when the components are context-free, also with application of an alphabetic projection. The resulting 2D families are compared with others defined in the past. The classical characterization of context-free languages, known as Chomsky-Schützenberger theorem, is extended to the crosswords in this way: the projection of a context-free crossword is equivalent to the projection of the intersection of a 2D Dyck language and the crossword of strictly locally testable language. The definition of 2D Dyck language relies on a new more flexible so-called Cartesian RCC operation on Dyck languages. The proof involves the version of the Chomsky-Schützenberger theorem that is non-erasing and uses a grammar-independent alphabet.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.