Abstract

In the current study, I will be presenting a literature review regarding the importance of students building a problem’s representation and the role modeling a real-world problem plays in students’ progressive mathematization. I shall introduce five types of geometrical problems applying the meaning of Linking Visual Active Representations (LVARs). Concrete examples will be presented in the next sections (i.e., Euclid’s proof of the Pythagorean Theorem, Vecten’s theorem, Gamow’s problem). I shall also introduce the meanings of hybrid object and diagram, as well as the meaning of dynamic section in a dynamic geometry environment, through examples. To summarize, I created an empirical classification model of sequential instructional problems in geometry. Its contribution to our knowledge in the area of the didactics of mathematics lies in the fact that this sequence of problems is regarded as a process whereby students develop a sequentially deeper understanding and increasingly more coherent reasoning that raises their van Hiele level. Keywords: dynamic section, hybrid object, Euclid “Elements”, Pythagorean Theorem, Vecten’s Theorem, Gamow’s problem, problem-solving. DOI : 10.7176/JEP/10-5-01

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.