Abstract

AbstractAlthough uranium oxides have played essential roles in many nuclear reactions, it is imperative to pursue alternative solutions to reuse the spent fuels due to paramount safety and economic concern. Spent nuclear oxide fuels include uranium dioxide (UO2), triuranium octoxide (U3O8) and uranium trioxide (UO3). In this work, first principles calculations based on density functional theory (DFT) were carried out on MUO2, MU3O8 and MUO3 (M= Li, Na and K) to explore their possibilities to serve as grid-storage-based cathode materials. In particular, the result of the optimal structures, average open circuit voltages (OCV) and mechanic stabilities during charge and discharge processes are presented. These results are also compared to available experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.