Abstract
We demonstrate an application of a core notion of information theory, typical sequences and their related properties, to analysis of population genetic data. Based on the asymptotic equipartition property (AEP) for nonstationary discrete-time sources producing independent symbols, we introduce the concepts of typical genotypes and population entropy and cross entropy rate. We analyze three perspectives on typical genotypes: a set perspective on the interplay of typical sets of genotypes from two populations, a geometric perspective on their structure in high dimensional space, and a statistical learning perspective on the prospects of constructing typical-set based classifiers. In particular, we show that such classifiers have a surprising resilience to noise originating from small population samples, and highlight the potential for further links between inference and communication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.