Abstract

AbstractIntense biogeochemical transformations in sediments and biofilms may occur over sub‐mm distances. Our current understanding of those transformations in such narrowly stratified environments has been facilitated by the introduction of microsensors. Until now most studies have been conducted using individual sensors for the various chemical species, and careful vertical alignment of the sensor tips is then essential for the meaningful interpretation of the resulting data. For instance, the determination of total dissolved sulfide (TDS) at high resolution requires perfect alignment of sensors for H2S and pH, as the pKa for H2S is close to ambient pH. In this study, we show how a recently developed TDS sensor and a new combined H2S/O2microsensor can improve the analysis of sulfidic environments including the oxygen–sulfide interface. The TDS sensor does not require pH correction unlike the conventional H2S sensor, and it thus eliminates the need for a simultaneous pH measurement. The combined sensor allows for perfect alignment of H2S and O2micro profiles and makes it possible to not only more accurately estimate fluxes, but also to determine overlapping zones of oxygen and dissolved sulfide at very high resolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.