Abstract

Abstract. Oman is located in an area of high seismicity, facing the Makran Subduction Zone, which is the major source of earthquakes in the eastern border of the Arabian plate. These earthquakes, as evidenced by several past events, may trigger a tsunami event. The aim of this work is to minimize the consequences that tsunami events may cause in coastal communities by integrating tsunami risk assessment and risk reduction measures as part of the risk-management preparedness strategy. An integrated risk assessment approach and the analysis of site-specific conditions permitted to propose target-oriented risk reduction measures. The process included a participatory approach, involving a panel of local stakeholders and international experts. One of the main concerns of this work was to obtain a useful outcome for the actual improvement of tsunami risk management in Oman. This goal was achieved through the development of comprehensive and functional management tools such as the Tsunami Hazard, Vulnerability and Risk Atlas and the Risk Reduction Measures Handbook, which will help to design and plan a roadmap towards risk reduction. The integrated tsunami risk assessment performed showed that the northern area of Oman would be the most affected, considering both the hazard and vulnerability components. This area also concentrates nearly 50 % of the hot spots identified throughout the country, 70 % of them are located in areas with a very high risk class, in which risk reduction measures were selected and prioritized.

Highlights

  • Tsunamis are low-frequency natural events but have a great destructive power when striking coasts around the world, involving loss of life and extensive damage to infrastructure and coastal communities worldwide

  • Oman is located in an area of high seismicity, facing the Makran Subduction Zone (MSZ), which is the major source of earthquakes in the eastern border of the Arabian plate (Al-Shaqsi, 2012)

  • The most recent tsunami event of seismic origin was the 1945 Makran tsunami, which caused more than 4000 fatalities and property losses in Iran, Pakistan, Oman and the United Arab Emirates (Heck, 1947; Heidarzadeh et al, 2008, 2009; Heidarzadeh and Kijko, 2011; Heidarzadeh and Satake, 2014a, b; Mokhtari, 2011, Latcharote et al, 2017)

Read more

Summary

Introduction

Tsunamis are low-frequency natural events but have a great destructive power when striking coasts around the world, involving loss of life and extensive damage to infrastructure and coastal communities worldwide. Oman is located in an area of high seismicity, facing the Makran Subduction Zone (MSZ), which is the major source of earthquakes in the eastern border of the Arabian plate (Al-Shaqsi, 2012). These earthquakes may trigger a tsunami event, as evidenced at least three times in the past (Heidarzadeh et al, 2008; Jordan, 2008). The high potential for tsunami generation of MSZ makes it one of the most tsunamigenic areas of the Indian Ocean.

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.