Abstract

Scandium (Sc), declared a critical raw material in the European Union (EU), could face further supply issues as the EU depends almost entirely on imports from China, Russia, and Ukraine. In this study, a tandem nanofiltration-solvent extraction procedure for Sc recovery from titania (TiO2) acid waste was piloted and then augmented by antisolvent crystallization. The new process, comprising advanced filtration (hydroxide precipitation, micro-, ultra-, and nanofiltration), solvent extraction, and antisolvent crystallization, was assessed in relation to material and energy inputs and benchmarked on ScF3 production. From ∼1 m3 of European acid waste containing traces of Sc (81 mg L-1), ∼13 g of Sc (43% yield, nine stages) was recovered as (NH4)3ScF6 with a purity of approximately 95%, demonstrating the technical feasibility of the approach. The production costs per kilogram of ScF3 were lower than reported market prices, which underscores a competitive process at scale. Although a few technical bottlenecks (e.g., S/L separation and electricity consumption) need to be overcome, combining advanced filtration with solvent extraction and antisolvent crystallization promises a future supply of this critical raw material from European secondary sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.