Abstract

While many virtual reality (VR) applications have emerged in the areas of entertainment, education, military training, physical rehabilitation, and medicine, only recently have some research projects begun to test the possibility of using virtual environments (VEs) for research in neuroscience, neurosurgery and for the study and rehabilitation of human cognitive and functional activities. Virtual reality technology could have a strong impact on neuroscience. The key characteristic of VEs is the high level of control of the interaction with the tool without the constraints usually found in computer systems. VEs are highly flexible and programmable. They enable the therapist to present a wide variety of controlled stimuli and to measure and monitor a wide variety of responses made by the user. However, at this stage, a number of obstacles exist which have impeded the development of active research. These obstacles include problems with acquiring funding for an almost untested new treatment modality, the lack of reference standards, the non-interoperability of the VR systems and, last but not least, the relative lack of familiarity with the technology on the part of researchers in these fields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call