Abstract
In a previous paper [Ca1], the author studied a low density limit in the periodic von Neumann equation with potential, modified by a damping term. The model studied in [Ca1], considered in dimensions d≥3, is deterministic. It describes the quantum dynamics of an electron in a periodic box (actually on a torus) containing one obstacle, when the electron additionally interacts with, say, an external bath of photons. The periodicity condition may be replaced by a Dirichlet boundary condition as well. In the appropriate low density asymptotics, followed by the limit where the damping vanishes, the author proved in [Ca1] that the above system is described in the limit by a linear, space homogeneous, Boltzmann equation, with a cross-section given as an explicit power series expansion in the potential. The present paper continues the above study in that it identifies the cross-section previously obtained in [Ca1] as the usual Born series of quantum scattering theory, which is the physically expected result. Hence we establish that a von Neumann equation converges, in the appropriate low density scaling, towards a linear Boltzmann equation with cross-section given by the full Born series expansion: we do not restrict ourselves to a weak coupling limit, where only the first term of the Born series would be obtained (Fermi's Golden Rule).
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.