Abstract

ABSTRACT In this work the interface system of the van der Waals fluid is investigated by using the density gradient theory incorporated with the mean-field theory. Based on the mean-field dividing interface generated by the Maxwell construction, we propose a highly accurate density profile model for the density gradient theory to facilitate reliable predictions of various properties for the interface region. It is found that the local intrinsic Helmholtz free energy peaks at the interface and that the maximum difference of the normal and tangential components of the pressure tensor corresponds to the maximum of the intrinsic Gibbs free energy. It is also found that the entire phase space is divided into gas-like and liquid-like regions by the single line composed of the mean-field interface and the Widom line. The two-fluid feature of the supercritical fluid is hence inherited from the coexistence region. Phase diagrams extended into the coexistence region in all the temperature-pressure-volume planes are thus completed with the solutions to the vapor–liquid equilibrium problem by the van der Waals equation of state.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.