Abstract

Introduction Proteus mirabilis is a biofilm-forming agent that quickly settles on the urinary catheters and causing catheter-associated urinary tract infections. Thus, the spread of multidrug-resistant P. mirabilis isolates, with the ability to form a biofilm that carries integron, extended-spectrum β-lactamases (ESBLs), and plasmid-mediated colistin resistance genes (mcr), represents a severe threat to managing nosocomial infectious diseases. This study is aimed at surveying the prevalence of ESBL, integrase, and mcr genes of P. mirabilis, isolated from the catheter, to assess the differences in their antimicrobial susceptibility and clonal dissemination. Method Microtiter plate assay was adopted to measure biofilm formation. The antimicrobial susceptibility was assessed by the disk diffusion method. Antimicrobial resistance genes (intI1, intI2, intI3, blaTEM, blaCTX-M, blaSHV, mcr1, and mcr2) were detected by PCR. All of the isolates were characterized by repetitive sequence-based PCR. Result From 385 collected catheters in patients admitted to the intensive care unit (ICU), 40 P. mirabilis were isolated. All of the isolates could form a biofilm. Proteus spp. had intrinsic resistance to tetracycline (95%) and nitrofurantoin (92.5%), which explains the high resistance prevalence. The most widely resistant antibiotic was trimethoprim-sulfamethoxazole (75%). Thirty-three (82.5%) isolates were classified as multidrug resistance (MDR). The prevalence of intI1 and intI2 genes was 60% and 25%, respectively. In 6 (15%) isolates, both genes were detected. The most frequent ESBL gene detected in all of the isolates was blaTEM. Also, no detection for mcr1 and mcr2 antibiotic resistance genes was reported. Rep-PCR identified 39(GTG)5 types (G1–G39) of 40 isolates that 38 isolates had unique patterns. Conclusion In this study, 82.5% of isolates were MDR with high antibiotic resistance to trimethoprim-sulfamethoxazole. The intI1 and blaTEM were the most prevalent genes in the integrase and ESBL gene family. High diversity was seen in the isolates with Rep-PCR. The increasing rate of MDR isolates with a high prevalence of resistance genes could be alarming and demonstrate the need for hygienic procedures to prevent the increased antibiotic resistance rate in the future.

Highlights

  • Proteus mirabilis is a biofilm-forming agent that quickly settles on the urinary catheters and causing catheterassociated urinary tract infections

  • P. mirabilis is a usual cause for complicated urinary tract infections (UTIs), and it becomes intricate in patients undergoing long-term indwelling urinary catheterization who may develop catheter-associated urinary tract infections (CAUTIs) [1]

  • The catheter solution was cultured on blood agar, Eosin Methylene Blue (EMB), MacConkey agar, and catalase, oxidase, IMViC, and urease are a few examples of conventional biochemical tests that were performed, and P. mirabilis suspected colonies were recultured to achieve a pure and single colony, and the ureG gene PCR was performed for genetic confirmation

Read more

Summary

Introduction

Proteus mirabilis is a biofilm-forming agent that quickly settles on the urinary catheters and causing catheterassociated urinary tract infections. This study is aimed at surveying the prevalence of ESBL, integrase, and mcr genes of P. mirabilis, isolated from the catheter, to assess the differences in their antimicrobial susceptibility and clonal dissemination. P. mirabilis is a usual cause for complicated UTIs, and it becomes intricate in patients undergoing long-term indwelling urinary catheterization who may develop CAUTIs [1] Such disorders cause difficulties by the inimitable ability of P. mirabilis to create crystalline biofilms, eventually leading to encrusted and blocked catheters [2]. CAUTIs present challenges to treatment strategies for different reasons, including the biofilm formation of P. mirabilis on catheters and urolith formation in the bladder and urinary tract, which could be created by multidrug-resistant isolates. It may expand by attaining resistance genes through horizontal transfer [6]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call