Abstract
We first make more precise a recent “Hamiltonian” reformulation of the Hohm-Zwiebach approach to the tree-level, O(d,d)-invariant string cosmology equations at all orders in the α' expansion, and recall how it allows to give a simple characterization of a large class of cosmological scenarios connecting, through a non-singular bounce, two duality-related perturbative solutions at early and late times. We then discuss the effects of adding to the action a non-perturbative, O(d,d)-breaking, dilaton potential V(ϕ). The resulting cosmological solutions, assumed to approach at early times the perturbative string vacuum (with vanishing curvature and string coupling), can stabilize the dilaton at late times and simultaneously approach either a matter-dominated FLRW cosmology or a de-Sitter-like inflationary phase, depending on initial conditions and on the properties of V(ϕ) at moderate-coupling. We also identify a general mechanism for generating isotropic late-time attractors from a large basin of anisotropic initial conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.