Abstract

The walnut shell is a hard and protective layer that provides an essential barrier between the seed and its environment. The shell is based on only one unit cell type: the polylobate sclerenchyma cell. For a better understanding of the interlocked walnut shell tissue, we investigate the structural and compositional changes during the development of the shell from the soft to the hard state. Structural changes at the macro level are explored by X-ray tomography and on the cell and cell wall level various microscopic techniques are applied. Walnut shell development takes place beneath the outer green husk, which protects and delivers components during the development of the walnut. The cells toward this outer green husk have the thickest and most lignified cell walls. With maturation secondary cell wall thickening takes place and the amount of all cell wall components (cellulose, hemicelluloses and especially lignin) is increased as revealed by FTIR microscopy. Focusing on the cell wall level, Raman imaging showed that lignin is deposited first into the pectin network between the cells and cell corners, at the very beginning of secondary cell wall formation. Furthermore, Raman imaging of fluorescence visualized numerous pits as a network of channels, connecting all the interlocked polylobate walnut shells. In the final mature stage, fluorescence increased throughout the cell wall and a fluorescent layer was detected toward the lumen in the inner part. This accumulation of aromatic components is reminiscent of heartwood formation of trees and is suggested to improve protection properties of the mature walnut shell. Understanding the walnut shell and its development will inspire biomimetic material design and packaging concepts, but is also important for waste valorization, considering that walnuts are the most widespread tree nuts in the world.

Highlights

  • The nut is commonly defined as a dry, indehiscent, usually one-seed fruit with a hard and tough endocarp enclosing the seed, which develops from a simple ovary

  • For advanced understanding of the distribution of cell wall substances in the nutshell in context with the microstructure we explore the feasibility of vibrational microspectroscopy and imaging

  • The strong lignification of the shell was clearly visible until the final stage in October, the shades of red changed during development (Figure 1C)

Read more

Summary

Introduction

The nut is commonly defined as a dry, indehiscent, usually one-seed fruit with a hard and tough endocarp (shell) enclosing the seed, which develops from a simple ovary. The hardened endocarp of the nut provides a physical barrier around the seed and protects the embryo against biotic and abiotic factors in the natural environment (Dardick and Callahan, 2014). This remarkable design can be attributed to natural selection in the course of evolution (Sallon et al, 2008). In a sustainable economy we can benefit from an optimized utilization of the nut waste—the shell and the husk—and for this, in-depth knowledge of these materials is of vital importance

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call