Abstract
In this paper, we consider the solutions of the relaxed Q-tensor flow in $${\mathbb{R}^3}$$ with small parameter $${\epsilon}$$ . We show that the limiting map is the so-called harmonic map flow. As a consequence, we present a new proof for the global existence of a weak solution for the harmonic map flow in three dimensions as in [18, 23], where the Ginzburg–Landau approximation approach was used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.