Abstract

In 2008, the PAMELA magnetic spectrometer has discovered unpredicted abundance of the ratio of the galactic positron flux to the total positron and electron flux at high energies. It does not agree with the cosmic-ray fluxes calculated using the GALPROP code. This abundance was called the “PAMELA anomalous effect” and one of the explanations of this effect was the appearance of the additional electron and positron flux due to annihilation or decay of the dark matter particles. Later the precision PAMELA results were confirmed by the Fermi-LAT gamma-ray telescope and the AMS-02 magnetic spectrometer. Currently, the new GAMMA-400 project is being developed. The one of its main goals is to search for signatures of dark matter particles, which produce gamma rays. The GAMMA-400 gamma-ray telescope will have unprecedented angular and energy resolutions. PAMELA and GAMMA-400 are the instruments with the best characteristics for their time, which will improve our understanding of the nature of dark matter. At present, the problem of the nature of dark matter still remains the main challenge in high-energy astrophysics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.