Abstract

In a singular limit, the Klein–Gordon (KG) equation can be derived from the Klein–Gordon–Zakharov (KGZ) system. We point out that for the original system posed on a d‐dimensional torus, the solutions of the KG equation do not approximate the solutions of the KGZ system. The KG system has to be modified to make correct predictions about the dynamics of the KGZ system. We explain that this modification is not necessary for the approximation result for the whole space with d≥3. Copyright © 2016 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.