Abstract

In this Review we discuss the tuning handles which can be used to steer the magnetic properties of FeIII‐4 f “butterfly” compounds. The majority of presented compounds were produced in the context of project A3 “Di‐ to tetranuclear compounds incorporating highly anisotropic paramagnetic metal ions” within the SFB/TRR88 “3MET”. These contain {FeIII 2Ln2} cores encapsulated in ligand shells which are easy to tune in a “test‐bed” system. We identify the following advantages and variables in such systems: (i) the complexes are structurally simple usually with one crystallographically independent FeIII and LnIII, respectively. This simplifies theory and anaylsis; (ii) choosing Fe allows 57Fe Mössbauer spectroscopy to be used as an additional technique which can give information about oxidation levels and spin states, local moments at the iron nuclei and spin‐relaxation and, more importantly, about the anisotropy not only of the studied isotope, but also of elements interacting with this isotope; (iii) isostructural analogues with all the available (i. e. not Pm) 4 f ions can be synthesised, enabling a systematic survey of the influence of the 4 f ion on the electronic structure; (iv) this cluster type is obtained by reacting [FeIII 3O(O2CR)6(L)3](X) (X=anion, L=solvent such as H2O, py) with an ethanolamine‐based ligand L′ and lanthanide salts. This allows to study analogues of [FeIII 2Ln2(μ3‐OH)2(L′)2(O2CR)6] using the appropriate iron trinuclear starting materials. (v) the organic main ligand can be readily functionalised, facilitating a systematic investigation of the effect of organic substituents on the ligands on the magnetic properties of the complexes. We describe and discuss 34 {MIII 2Ln2} (M=Fe or in one case Al) butterfly compounds which have been reported up to 2020. The analysis of these gives perspectives for designing new SMM systems with specific electronic and magnetic signatures

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.