Abstract

External amplified spontaneous emission (ASE) efficiency around 30% is reported for an optically active molecule, which at the same time shows antitumor activity. The complex is formed by the covalent binding of an anticancer drug, tamoxifen, commonly applied in breast cancer therapy, and nitro-2-1,3-benzoxadiazol-4-yl (NBD) dye, which is frequently used as a biomarker in hydrophobic environments, such as lipid membranes. A laser-like pump threshold around 100 kW/cm2 was found in solutions of the fluorescent drug diluted in acetone or in oil. Agreement with an ASE spatial propagation model, as well as the lack of optical feedback in the walls of the dilution cuvette confirms that ASE is the physical mechanism that explains the high efficiency observed. The waveguide character and the polarization dependence of ASE are also studied. Highly efficient optical gain in such systems suggests new biophotonic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.