Abstract

The prompt emission of gamma-ray bursts extends from the early pulses observed in γ-rays (>15 keV) to very late flares of X-ray photons (0.3–10 keV). The duration of prompt γ-ray pulses is rather constant, while the width of X-ray flares correlates with their peak time, suggesting a possibly different origin. However, pulses and flares have similar spectral properties. Considering internal and external shock scenarios, we derive how the energy and duration of pulses scale with their time of occurrence, and we compare this with observations. The absence of an observed correlation between the prompt emission pulse duration and its time of occurrence favours an “internal” origin and confirms earlier results. We show that the energetic and temporal properties of X-ray flares are also consistent with being produced by internal shocks between slow fireballs with a small contrast between their bulk Lorentz factors. These results relax the requirement of a long-lasting central engine to explain the latest X-ray flares.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.