Abstract
We investigate two-dimensional Wess–Zumino models in the continuum and on spatial lattices in detail. We show that a non-antisymmetric lattice derivative not only excludes chiral fermions but in addition introduces supersymmetry breaking lattice artifacts. We study the non-local and antisymmetric SLAC derivative which allows for chiral fermions without doublers and minimizes those artifacts. The supercharges of the lattice Wess–Zumino models are obtained by dimensional reduction of Dirac operators in high-dimensional spaces. The normalizable zero modes of the models with N=1 and N=2 supersymmetry are counted and constructed in the weak- and strong-coupling limits. Together with known methods from operator theory this gives us complete control of the zero mode sector of these theories for arbitrary coupling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.