Abstract

We deal with the study of the spatial restricted three-body problem in the case where the small particle is far from the primaries, that is, the so-called comet case. We consider the circular problem, apply double averaging and compute the relative equilibria of the reduced system. It appears that, in the circular problem, we find not only part of the equilibria existing in the elliptic case, but also new ones. These critical points are in correspondence with periodic and quasiperiodic orbits and invariant tori of the non-averaged Hamiltonian. We explain carefully the transition between the circular and the elliptic problems. Moreover, from the relative equilibria of elliptic type, we obtain invariant 3-tori of the original system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.