Abstract

Sintering and microstructural development in ceramics has long been studied in a two-dimensional grain size-density space, with only texture (i.e. deviation of grain orientation from random) used to gain first insights into additional parametric spaces. Following an increased interest for grain boundary engineering and a deeper understanding of dopant effects on sintering and grain boundaries, the theory of complexion transitions for ceramics has been introduced over the last decade, providing a new base for advanced microstructure engineering in ceramics. With emergence of high entropy ceramics over the last 5 years, the combination of both yields new grounds for exploration and engineering of functional ceramic materials of the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.