Abstract

Interoperability is crucial to overcoming various challenges of data integration in the healthcare domain. While OMOP and FHIR data standards handle syntactic heterogeneity among heterogeneous data sources, ontologies support semantic interoperability to overcome the complexity and disparity of healthcare data. This study proposes an ontological approach in the context of the EUCAIM project to support semantic interoperability among distributed big data repositories that have applied heterogeneous cancer image data models using a semantically well-founded Hyperontology for the oncology domain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.