Abstract

A predictive understanding of soft x-ray near-edge absorption spectra of small molecules is an enduring theoretical challenge and of current interest for x-ray probes of molecular dynamics. We report the experimental absorption spectrum for the electron spectroscopy for chemical analysis (ESCA) molecule (ethyl trifluoroacetate) near the carbon 1s absorption edge between 285–300 eV. The ESCA molecule with four chemically distinct carbon sites has previously served as a theoretical benchmark for photoelectron spectra and now for photoabsorption spectra. We report a simple edge-specific approach for systematically expanding standard basis sets to properly describe diffuse Rydberg orbitals and the importance of triple excitations in equation-of-motion coupled-cluster calculations of the energy interval between valence and Rydberg excitations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.