Abstract

We consider a model for Darwinian evolution in an asexual population with a large but non-constant populations size characterized by a natural birth rate, a logistic death rate modelling competition and a probability of mutation at each birth event. In the present paper, we study the long-term behavior of the system in the limit of large population ($K\rightarrow\infty$) size, rare mutations ($u\rightarrow 0$), and small mutational effects ($\sigma\rightarrow 0$), proving convergence to the canonical equation of adaptive dynamics (CEAD). In contrast to earlier works, e.g. by Champagnat and Meleard, we take the three limits simultaneously, i.e. $u=u_K$ and $\sigma=\sigma_K$, tend to zero with $K$, subject to conditions that ensure that the time-scale of birth and death events remains separated from that of successful mutational events. This slows down the dynamics of the microscopic system and leads to serious technical difficulties that requires the use of completely different methods. In particular, we cannot use the law of large numbers on the diverging time needed for fixation to approximate the system with the corresponding deterministic one. To solve this problem we develop a stochastic Euler scheme based on coupling arguments that allows to control the time evolution of the system over time-scales that diverge with $K$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.