Abstract
In this study, we explore the impact of mechanical stimuli on skin models using an innovative skin-on-a-chip platform, addressing the limitations of conventional transwell-cultured skin equivalents. This platform facilitates cyclic mechanical stimulation through compression and stretching, combined with automated media perfusion. Our findings, using bioimaging and bulk RNA sequencing, reveal increased expression of Keratin 10 and Keratin 14, indicating enhanced skin differentiation and mechanical integrity. The increase in desmosomes and tight junctions, observed through Claudin-1 and Desmoplakin 1 & 2 analysis, suggests improved keratinocyte differentiation due to mechanical stimulation. Gene expression analyses reveal a nuanced regulatory response, suggesting a potential connection to the Hippo pathway, indicative of a significant cellular reaction to mechanical stimuli. The results show the important influence of mechanical stimulation on skin model integrity and differentiation, demonstrating the potential of our microfluidic platform in advancing skin biology research and pharmaceutical testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.