Abstract
The low-Reynolds-number wake dynamics and stability of the flow past toroids placed normal to the flow direction are studied numerically. This bluff body has the attractive feature of behaving like the sphere at small aspect ratios, and locally like the straight circular cylinder at large aspect ratios. Importantly, the geometry of the ring is described by a single parameter, the aspect ratio (, the initial asymmetric transition is structurally analogous to the mode A transition for the circular cylinder, with a discontinuity present in the Strouhal–Reynolds-number profile. The present numerical study reveals a shedding-frequency decrease with decreasing aspect ratio for ring wakes, and an increase in the critical Reynolds numbers for flow separation and the unsteady flow transition. A Floquet stability analysis has revealed the existence of three modes of asymmetric vortex shedding in the wake of larger rings. Two of these modes are analogous to mode A and mode B of the circular cylinder wake, and the third mode, mode C, is analogous to the intermediate wavelength mode found in the wake of square section cylinders and circular cylinder wakes perturbed by a tripwire. Furthermore, three distinct asymmetric transition modes have been identified in the wake of small aspect ratio bluff rings. Fully developed asymmetric simulations have verified the unsteady transition for rings that exhibit a steady asymmetric wake.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.