Abstract
It is well known that uniform resolvent estimates imply spectral cluster estimates. We show that the converse is also true in some cases. In particular, Sogge's universal spectral cluster estimates for the Laplace–Beltrami operator on closed Riemannian manifolds directly imply uniform resolvent estimates outside a parabolic region, without any reference to parametrices. The method is purely functional analytic and takes full advantage of the known spectral cluster bounds. This yields new resolvent estimates for manifolds with boundary or with low-regularity metrics, among other examples. Moreover, we show that the resolvent estimates are stable under perturbations and use this to establish uniform Sobolev and spectral cluster inequalities for Schrödinger operators with singular potentials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.