Abstract

In this paper, we develop an approximate wide-bandwidth upper bound to the absorption enhancement in arrays of metaparticles, applicable to general wave-scattering problems and motivated here by ocean-buoy energy extraction. We show that general limits, including the well-known Yablonovitch result in solar cells, arise from reciprocity conditions. The use of reciprocity in the stochastic regime leads us to a corrected diffusion model from which we derive our main result: an analytical prediction of optimal array absorption that closely matches exact simulations for both random and optimized arrays under angle/frequency averaging. This result also enables us to propose and quantify approaches to increase performance through careful particle design and/or using external reflectors. We show in particular that the use of membranes on the water's surface allows substantial enhancement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.