Abstract

Innovations in viral vaccine manufacturing are crucial for pandemic preparedness and to meet ever-rising global demands. For influenza, however, production still mainly relies on technologies established decades ago. Although modern production shifts from egg-based towards cell culture technologies, the full potential has not yet been fully exploited. Here, we evaluate whether implementation of state-of-the-art technologies for cell culture-based recombinant protein production are capable to challenge outdated approaches in viral vaccine process development. For this, a fully automated single-cell cloning strategy was established to generate monoclonal suspension Madin-Darby canine kidney (MDCK) cells. Among selected cell clones, we could observe distinct metabolic and growth characteristics, with C59 reaching a maximum viable cell concentration of 17.3 × 106 cells/mL and low doubling times in batch mode. Screening for virus production using a panel of human vaccine-relevant influenza A and B viruses in an ambr15 system revealed high titers with yields competing or even outperforming available MDCK cell lines. With C113, we achieved cell-specific virus yields of up to 25,000 virions/cell, making this cell clone highly attractive for vaccine production. Finally, we confirmed process performance at a 50-fold higher working volume. In summary, we present a scalable and powerful approach for accelerated development of high-yield influenza virus production in chemically defined medium starting from a single cell.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.