Abstract

Regeneration of boron–oxygen related defects is investigated in differently compensated silicon wafers. It is shown for the first time that boron–oxygen defects can be transformed into a stable regenerated state also in compensated n-type silicon.The coupling between regeneration rate and the completeness of the regeneration reaction is simulated based on the 3-state-model of BO defects. Maximum regeneration temperatures that can be applied are determined for differently regenerating samples. The results are used to develop a high-speed process that can accelerate regeneration by two orders of magnitude without compromising neither the completeness of the regeneration process nor the stability of the resulting high minority carrier lifetime values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.