Abstract

This paper proposes an effective approach to model the emotional space of words to infer their Sense Sentiment Similarity (SSS). SSS reflects the distance between the words regarding their senses and underlying sentiments. We propose a probabilistic approach that is built on a hidden emotional model in which the basic human emotions are considered as hidden. This leads to predict a vector of emotions for each sense of the words, and then to infer the sense sentiment similarity. The effectiveness of the proposed approach is investigated in two Natural Language Processing tasks: Indirect yes/no Question Answer Pairs Inference and Sentiment Orientation Prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.