Abstract

The widespread use of disposable plastic straws has caused a long-lasting environmental problem. Potential alternatives for plastic straws are far from satisfactory due to the low utility, poor water stability, and non-ideal natural degradability. In this work, an edible, hydrostable, and degradable straw was developed from the economically significant seaweed. Seaweed-derived insoluble cellulose fibers were used as the building block of the straw, and the soluble polysaccharide extracts were explored as the natural glue through the chelation with Ca2+. Repeated freeze-thawing was introduced to strengthen the molecular interactions, which further improved its mechanical stability and hydrostability. The straw exhibited remarkable natural degradability in open environments, particularly in marine-mimicking conditions. By incorporating pH-sensitive food pigments, the straws could indicate acid-base property of a beverage or even discriminate the freshness of milk. The versatile seaweed-derived straw adhered to the biocycle concept of “from sea to sea” to alleviate the burden of white pollution on oceans.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call