Abstract

Introduction The aim of this chapter is to provide basic information on the use of the technique of laser-induced breakdown spectroscopy (LIBS) for quantitative analysis. It begins with a discussion of the theoretical assumptions on the state of the plasma that must be made in order to ensure reliability of the analysis. A review is then presented of some of the methods developed to extract quantitative information from experimental LIBS data. In 1997, Castle et al . stated that at the time only a limited number of studies had reported on the use of LIBS as a quantitative technique [1]. This paucity of results was attributed to the inadequate level of the analytical figures of merit (accuracy, precision and detection limits) attainable by this technique in comparison with other well-established techniques. Since then, however, many papers have appeared in the literature reporting on the use of the LIBS technique for quantitative analysis. In fact, owing to the peculiar advantages of LIBS, including short measurement times, the ability to use samples without any pre-treatment and the capability for simultaneous multi-element detection, many researchers have focused their efforts on developing new methods for reliable LIBS-based quantitative analysis. Undoubtedly, in some particular situations (screening, in situ measurement, process monitoring, hostile environments, etc.) LIBS may be the technique of choice. Thus, the main research efforts have been aimed at exploiting the technique's potential and minimizing its drawbacks. Most of the drawbacks of LIBS are, however, side effects of its intrinsic advantages.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call