Abstract
We consider two approaches to isotopy invariants of oriented links: one from ribbon categories and the other from generalized Yang–Baxter (gYB) operators with appropriate enhancements. The gYB-operators we consider are obtained from so-called gYBE objects following a procedure of Kitaev and Wang. We show that the enhancement of these gYB-operators is canonically related to the twist structure in ribbon categories from which the operators are produced. If a gYB-operator is obtained from a ribbon category, it is reasonable to expect that two approaches would result in the same invariant. We prove that indeed the two link invariants are the same after normalizations. As examples, we study a new family of gYB-operators which is obtained from the ribbon fusion categories SO (N)2, where N is an odd integer. These operators are given by 8 × 8 matrices with the parameter N and the link invariants are specializations of the two-variable Kauffman polynomial invariant F.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.