Abstract

Spectral analysis of natural scenes can provide much more detailed information about the scene than an ordinary RGB camera. The richer information provided by hyperspectral images has been beneficial to numerous applications, such as understanding natural environmental changes and classifying plants and soils in agriculture based on their spectral properties. In this paper, we present an efficient manifold learning based method for accurately reconstructing a hyperspectral image from a single RGB image captured by a commercial camera with known spectral response. By applying a nonlinear dimensionality reduction technique to a large set of natural spectra, we show that the spectra of natural scenes lie on an intrinsically low dimensional manifold. This allows us to map an RGB vector to its corresponding hyperspectral vector accurately via our proposed novel manifold-based reconstruction pipeline. Experiments using both synthesized RGB images using hyperspectral datasets and real world data demonstrate our method outperforms the state-of-the-art.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.